
OF FLUID BETWEEN PERMEABIJI BOUNDARIES 
(OB USTOICHIVQSTI POPERECHNOCO TECHENIIA 

ZHIDKOSTI MEZHDU PRONITSAEMYMI GRANITSAMI) 

PMM Vol. 31, No. 1, 1967, pp. 116-119 

G. Z. GERSHUNI, E, M. ZHUKHOVJTSKII and D. L. SHVARTSBLAT 
(Perm’) 

(Received October I, 1966) 

It is a well known fact that the investigation of stability of steady flows of viscous fluid 

presents formidable mathematical difficulties. Exact solution of the problem dealing 

with the spectrum of small narmal perturbations is known only in some isolated cases. 

Below we consider an example of a simple steady motion for which the problem of the 

perturbation spectrum is solved exacrly. 

Let us consider a plane infinite layer of viscous incompressible fluid, bounded by the 

planes Z = *fi. We shall assume that the bou.ndarZes of the layer are permeable and 

that through the plane Z = - )?G a h omogeneo~ flow of fluid takes place with the velo- 

city 0, in the inward direction, while across the plane Z = M , we have the same 

flow in the outward direction. Thus we have, in the fluid layer, a steady transverse 

motion with homogeneous velocity 

vx = 0, uy = 0, vz = VlJ (1) 

(we have chosen the origili to be. in the center of the layer with X- and y-axes parallel 

to the boundaries 

Equations of small perturbations of the steady motion (1) are obtained in the usual 

manner from the Navier-Stokes and continue equations, ~limina~ng the pressure and 

x- and I/-compotients of the perturbation velocity, we obtain the equation for the 

transverse component of the perturbation velocity V, = U, (X , p, Z. 6) 

This is written in the dimensionless form and F, , h2 / W and U, are taken as the 

units of distance, time and velocity, respectively. A dimensionless parameter entering 

(2) is the Reynolds’ number A, 
Let us consider normal perturbations of the type 

YE = u (2) exp [ - ht + t f$x + Fc,Y)l 
periodic in the plane of the layer. 

(3) 

Here x is rhe complex perturbation decrement, while kk and kz are wave nm- 

hers in the X- and g-directian, From (2) we obtain the equation for the amplitude of 

perturbations v(a) 

120 



Transverse flow of fluid between permeable boundaries 121 

- h (Y” - /,?p) + R (0”’ - k$‘) = ,Iv - 2l$v” + /-,+, ka = kla a; f$ (4) 
On the boundaries of the layer we have 

,,J= r/=0 for 2 = & 1 (5) 

The boundary value problem (4) and (5) defines the spectrum of characteristic per- 

turbations and of the corresponding decrements A, It should be noted that (4) differs 

from the Orr-Sommerfeld equation which occurs in the investigation of perturbations of 

longitudinal flows. 

We shall first show that all perturbations of the type (3) decay with time. To do this, 

we shall multiply (4) by the complex conjugate solution U and integrate the result with 

respect to Z from -1 to 1 , Combining the result with the complex conjugate, we 

obtain 1 1 

(h+h*) 5 (,v’I”+k’,r[2)&=2 5 ( 1 v” 12 + 2k? 1 u’ / 2 + k4 1 v I”) dz (6) 
--I -1 

Since both integrals entering (6) are positive, we have h + ho > 0 . Thus, real parts 

h, of the decrements of all normal perturbations are positive and the steady motion (1) 

is always stable. 

To find the spectrum of decrements and perturbations, we must solve the boundary 

value problem (4) and (5) which is not self-conjugate. 

General solution of the linear equation with constant coefficients (4) has the form 

v = Clekz + Cze-” + Cserl’ + CseraZ (7) 

r1,2 = ‘/2 [R _+ JfR” + 4 (k” - L)] (8) 

Boundary conditions (5) result in the set of four linear homogeneous equations for the 

coefficients C, . Condition of solvability of this system gives a characteristic equation 

which can be written as tanhz k _-tanhrI_r 
2 (k2 - r1r!d~ -7 E 

tad rl -tatma k (rl- ra) (9) 

Separating the real and imaginary part, we obtain 

a (k2 -k a2 + p2 - *I4 R2) sti2k 

4 (a2 + P) -z-+ s0;~4a~2~os 4P (wM cos 2B --coti2kco&cz) = 0 (lo) 

p (ka - a2 - P‘J 
- ‘lqR2) ti$ +,,~~~~, 4P (c&?wsh2a -dk cos 2p) = 0 

4 (a2 + Pz) 
(12) 

Real magnitudes a and p entering (10) and (11) can be found from 

l/z v/Rz+ 4 (k2 - h) = a + $3 (12) 

Assuming x = h, + $4 we have 

l hr= ]ct- a= .+ 8s + it4 R2, &== -2a#3 (13) 
Thus, Equations (10) and (11) define real and imaginary parts of characteristic decre- 

ments h, and 1, in terms of 8 and k. Coefficients 4 of the solution of (7) defin- 

ing the form of perturbations are of unwieldy appearance and are, consequently, omitted. 

When A = 0 , the decrements x of normal perturbations are real and positive (mono- 

tonic decay of perturbations). They can be determined (in order of increasing magni- 

tude) from the following transcendental relations : 
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f& cot fit, = k coth k, h(O) = @), h.p),... 

/ (PO E JQ’ - k”) (14) 
Here, the solutions of (4) with 3 = 0 which 

_ __._ --.. 
are even with respect to the middle of the layer, 

_/--- / correspond to the first subsystem, while odd solu- 

-- Y’ 
_--- / tions correspond to the second subsystem (see e, g. 

PI). 
At small values of J? the decrements h re - 

main real, and in this region h, = 0 , i. e. a = 0 . 

In this case (10) is satisfied identically and x p 

can be found from (11) , which becomes 

R 
5 M 

t 
@+_!g %!g _/_ (15) 

Fig. 1 

-L -.---- p (COShR 
s1n q.3 

-_cosh% COS “3) = 0 

From (15) it follows that for small J? , the decrements vary with increasing J? , asA 

k = h(O) _1- aR2 + ,., (16) 

a = BU (4ki30 - ~12k sin 2Bo) [PO sin Zfl, ti 2k (1-2 k coth 2k) - 

- k (I-2fb cot 2bo) (I--cosh2kcos 2&)]-l+ ‘/& (17) 

With J’? increasing, the real decrements merge pairwise, forming complex conjugate 

pairs of decrements, i e. oscillatory perturbations appear and move along the layer with 

phase velocity different from zero. 

The spectrum under consideration is thus analogous to the spectrum of decrements in 

case of longitudinal flows with an odd profile [l]. 

Fig. 1 shows, as an example, spectra constructed according to (10) and (11) for wave 

numbers iz = 1 (solid line) and ic = 4 (dotted line). 

In the region of large R , (10) and (11) can yield asymptotic relationships between 

CL and 6 (i. e. i r and h, ) and the Reynolds’ number R. We find that for large R , 
parameter fi is independent of R , while cx is linearly dependent on J? 

x=m;m -_6 6 = In (gP]“’ 

and the values of @ are given as roots of the transcendental equation 

(18) 

(19) 
Each root 6 n of (19) corresponds to’a complex conjugate pair formed as the result 

of merging of two neighboring real levels of the spectrum. For k = 1 for example, we 

have 6 = 3.ti32, 6.883, 10.07, 13.24... and corresponding fi = 1,382, 1.644, 1.819, 

i*94b... For h = 4, we have p = 3.338, 3.624, 9.860, 13.07... and 6 = 4.043, 4.137, 

4.239, 4.331... Real and imaginary parts of decrements in the region of large R can be 

found in accordance with (13), from 
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h, = (k2 + 6” - 52) + SR, Xi = f (R - 26) ,S (20) 

It should be noted that the asymptotic formulas (20) describe well the whole complex 

region of the spectrum. In particular, the values of Reynolds’ number A, for which 

oscillatory perturbations occur (at this point )I i = 0) can be found with sufficient accu- 

racy from Formula A.= 2 6 which follows from (20). 

F 
b 

Fig. 2 

Fig. 2 gives the perturbation streamlines in the plane case ( kz 7 0 , ?S = kl = 1) 
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for a fixed moment of time. Graphs show the pattern of motion in the interval of values 

of x equal to half of the wavelength of the perturbation wave. Fig. ‘La to d correspond 

to the decaying monotone perturbations for various levels of the spectrum when J? 1 1 

(values of R and 1,. to which these figures correspond are denoted on Fig. 1 by the 

bold type dots). Fig. 2 e and f show the streamlines of decaying oscillatory perturba- 

tions 

(Here $ is the complex stream function) for the first (Fig. :!e) and the second (Fig. 2 fJ 

in the direction of increasing 1 I‘ , pair of merged levels for R = 19. 

With the increasing number of levels the structure of eigenfunctions becomes more 

complex, and the effect of sidewise displacement of perturbations due to the transverse 

flow becomes noticeable , 
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